Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids

A maximum-principle-satisfying space-time conservation element and solution element (CE/SE) scheme is constructed to solve a reduced five-equation model coupled with the stiffened equation of state for compressible multifluids. We first derive a sufficient condition for CE/SE schemes to satisfy maximum-principle when solving a general conservation law. And then we introduce a slope limiter to e...

متن کامل

Solving the MHD equations by the space-time conservation element and solution element method

We apply the Space-Time Conservation Element and Solution Element (CESE) method to solve the ideal MHD equations with special emphasis on satisfying the divergence free constraint of magnetic field, i.e., ∇⋅B = 0. In the setting of the CESE method, four approaches are employed: (i) the original CESE method without any additional treatment, (ii) a simple corrector procedure to update the spatial...

متن کامل

A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems

Nonlinear constrained finite element approximations to anisotropic diffusion problems are considered. Starting with a standard (linear or bilinear) Galerkin discretization, the entries of the stiffness matrix are adjusted so as to enforce sufficient conditions of the discrete maximum principle (DMP). An algebraic splitting is employed to separate the contributions of negative and positive off-d...

متن کامل

Accepted Manuscript a Constrained Finite Element Method Satisfying the Discrete Maximum Principle for Anisotropic Diffusion Problems

Nonlinear constrained finite element approximations to anisotropic diffusion problems are considered. Starting with a standard (linear or bilinear) Galerkin discretization, the entries of the stiffness matrix are adjusted so as to enforce sufficient conditions of the discrete maximum principle (DMP). An algebraic splitting is employed to separate the contributions of negative and positive off-d...

متن کامل

A novel partial differential algebraic equation (PDAE) solver: iterative space-time conservation element/solution element (CE/SE) method

For solving partial differential algebraic equations (PDAEs), the space–time conservation element/solution element (CE/SE) method is addressed in this study. The method of lines (MOL) using an implicit time integrator is compared with the CE/SE method in terms of computational efficiency, solution accuracy and stability. The space–time CE/SE method is successfully implemented to solve PDAE syst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2017

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2016.10.036